Culture, Innovation and Entrepreneurship: connecting the knowledge dots
Culture, Innovation and Entrepreneurship: connecting the knowledge dots

Institute of Knowledge Asset Management
University of Basilicata
Arts for Business Ltd
Polytechnic University of Bari
INDEX

INDUSTRY

Jose Sanchez-Gutierrez, Juan Mejia-Trejo, Elsa Georgina Gonzalez-Uribe
Intellectual Capital, Key Factor for Competitiveness: SMEs Manufacturing Industry in Mexico 1097

Petr Scholz, Jan Voráček
Organizational culture and green management: innovative way ahead in hotel industry 1109

Teemu Laine, Petri Suomala, Natalia Saukkonen
Engaging facts and feelings in management accounting practices 1122

Vincenza Esposito, Paolo Canonico, Ernesto De Nito, Mario Pezzillo Iacono, Marcello Martinez
Exploring Knowledge Integration in a Wine Research Project 1133

KNOWLEDGE MANAGEMENT

Domenico Camarda, Irene Pluchinotta
Managing multi-agent knowledge for urban microclimate planning: A case-study in Bari (Italy) 1146

Enrico Scarso
What do we know about KIBS? Results of a systematic literature review 1159

Roberto Cerchione, Emilio Esposito
Knowledge Management Tools and Practices alignment in SMEs 1173

Malgorzata Zieba, Bruno Schivinski
Knowledge management driven leadership, culture and innovation success - an integrative model 1193

Dmitry Kudryavtsev, Tatiana Gavrilova, Lev Grigoriev
An illustration of a novel approach to classifying and selecting knowledge diagrams: case study 1203

TRACK - Culture, Innovation and Entrepreneurship: challenges in the creative industries

Diane-Gabrielle Tremblay
Innovation and Entrepreneurship in the IT-multimedia sectors: Inter-Sectoral Collaborations 1212

Amina Yagoubi, Diane-Gabrielle Tremblay
Culture, Innovation and Entrepreneurship: challenges in the fashion industry 1225

TRACK - Managing Knowledge for Innovation: the role of Culture and Cultural Diversities

Barbara Aquilani, Tindara Abbate, Anna Codini
The role of culture in open innovation processes through intermediaries: towards a theoretical framework 1237

Paola Castellani, Chiara Rossuto, Zvi Jossman
Managing Cultural Diversity for Innovation: The Experience of Italian International Corporation 1250
Intellectual Capital, Key Factor for Competitiveness: SMEs Manufacturing Industry in Mexico

Jose Sanchez-Gutierrez*
Department of Marketing and International Business
University of Guadalajara, Periférico Norte 799 “G-306”, Los Belenes, Zapopan, Jalisco, Mexico. C.P. 45100

Juan Mejia-Trejo
Titular professor Department of Marketing and International Business University of Guadalajara

Elsa Georgina Gonzalez-Uribe
Titular professor Department of Marketing and International Business
University of Guadalajara

* Corresponding author

Structured Abstract

Purpose – The main purpose of this research is to analyse the impact of the intellectual capital on the competitiveness in the SMEs manufacturing in Mexico.

Design/methodology/approach – The approach of this investigation is developing a theoretical construct to determine the correlation between intellectual capital and competitiveness, and find the most relevant factors that impacts it. To determine the variables involved in this research, were analysed for the intellectual capital: the information obtained, intellectual capital developed and learning and feedback; and the competitiveness with other three factors: Financial Performance, Costs Reduction and Technology Use. The questionnaire was designed considering the competitiveness as dependant variable, and as independent variable the intellectual capital. Using the Likert scale in order to determine the degree of agreement or disagreement, and the survey was applied to 420 SMEs. The results were analysed using confirmatory factor analysis (CFA), Cronbach’s alpha and subsequently structural equation models (SEM).

Originality/value – This study shows the effects of the dimensions of intellectual capital that are directly impacting the competitiveness of SMEs, these factors influence a lesser or greater degree, so that each factor of the dependent and independent variables should be analysed separately to propose improvements in implementing CI to seek higher level of competitiveness.

Practical implications – The results obtained measure the level of correlation between the variables in study, hence to design the strategies and key factors needed to integrate the intellectual capital and develop competitive synergies in the SMEs manufacturing. Keywords – Intellectual Capital, Competitiveness, Manufacturing Industry

Paper type – Academic Research Paper
1 Introduction

The information will be significant for manufacturing SMEs, as the investigation will serve as an incentive to carry out the purposes of Intellectual Capital development and its impact on competitiveness.

Generating and maintaining companies, and small and medium, is an important part of the national economy, generating 52% of GDP and 72% of employment in the country (Banamex. 2013), figures we should not let pass unnoticed, it is important to take actions that optimize and support SMEs.

Through this study we intend to make an approach analyzing the situation of intellectual capital from internal and external technical activities of manufacturing companies, and the tools used identifying difficulties and benefits to develop it.

1.1 Objectives

Analyze the relationship of Intellectual Capital and Competitiveness in SMEs in the Manufacturing Industry of Guadalajara Mexico.

1.2 Research Questions

How intellectual capital influences the competitiveness in SMEs of Guadalajara?

2 Literature Review

Intellectual capital has always been present in business but it was not until the 1990s when it began to have more relevance in the organizations. According to Brooking (1997) intellectual capital is not new, but has been present from the time the first seller established a good relationship with a client.

IC is difficult to define because of its invisible nature and dynamics. The term intellectual capital is often a term synonymous with intellectual property assets, intangible assets or knowledge assets (Roos, Pike, and Fernström 2001). IC could be considered as intellectual material that has been formalized, captured and leveraged to produce a good of greater value (Klein and Prusak, 1994), and IC assets created through activities ranging from the acquisition of new knowledge (learning) and inventions to create valuable relationships (Wiig, 1997).

Several models have emerged looking for manage, measure and control IC of a company. Among them are the Skandia Intellectual Capital Model (Edvinsson, 1997); Intangible Asset Monitor (Sveiby, 1997); Balanced Scorecard (Kaplan and Norton, 1996). Although each takes a somewhat different approach, the concept underlying the design incorporated is quite similar, Steward (1997) defines IC as intellectual material, knowledge, information, intellectual property; experience that can be used to create value, wealth is the product of knowledge. Bradley (2003) states that intellectual capital is the ability to transform knowledge and other intangible assets in wealth producing resources for business and nations.
Some definitions of intellectual capital is routed to the elements of the “intellectual capital”, for example, so, the focus on people, intellectual property, infrastructure and market (Brooking, 1997), the knowledge, experience, organizational technology and relationships with customers by the organization (Edvinsson, 1997), the sum of the knowledge of the members of the organization and its conversion into brands, products and processes (Roos, Pike, and Fernström, 2005), patents, processes, management skills, technologies, information about former customers and suppliers experience. (Stewart, 1997).

The IC comprises structural human and capital. Human capital represents the collective capabilities of the workforce of a company to meet and address of customer, market issues and operational concerns (quality, productivity, technical support, etc.) Structural capital consists of customer or market and organizational capital, customer capital represents the value of relationships with customers, suppliers, industry associations and markets (Punniyamoorthy, Raj, 2007), and organizational Capital philosophy and systems for maintaining organizational capacity focuses, therefore, organizational capital consists of capital and process innovation, reflecting the long-term ability of a company to create intellectual properties (Schiuma and Lerro, 2008) and deals with capital process.

According to Fasil and Osada (2011), the IC has been recognized as a strategic area for strengthening practices total quality management and promote the value of a company's brand and image. Despite recent difficulties in the definition and evaluation of IC, efforts to identify key performance indicators for IC have been ongoing in the organizational and national levels (Lonnqvist, Kianto and Sillanpa, 2009).

2.1. Information Search

Disclosure of human capital can be considered as the business information disclosed about the knowledge of its workforce, skills and motivation. It is voluntarily disclosed by relevant communication channels. However, external reports focus primarily on financial data. Consequently, like other intangible resources, human capital is not considered properly outside the financial implications (Canibano, Garcia and Sanchez, 2000). Moreover, human capital cannot be activated as an asset. As a result, a large part of the resources of the company does not appear in the balance sheet (Hand and Lev, 2003). Thus, several scholars have called for greater disclosure of information on human capital and other intangible resources.

Innovation is a multifaceted expression used in the strategic and operational levels of the company, covering business processes, products and services, competitive intelligence, trade policy, policy formulation and understanding of customers. As innovation is the power and added value, but also covers a variety of research perspectives informed by theories of economics, sociology and psychology. In particular, this review identifies the theory of strong linkage with the IC innovation, implying that the relationship is very positive. From the early stages of development of IC technology and management, innovation has been identified as the main determinant of competitiveness (Petty and Guthrie, 2000).
2.2 Knowledge Development

A particular feature of the basic concept of Drucker (1993) is that value creation based on knowledge is almost exclusively due to a particular type of people he calls knowledge workers, denoting persons shapely and skilled. Based on this division, which is reproduced hereafter work in IC, Drucker recommends creating organizational structures focused on the management of the first group, always aligning their possible contributions to the desired organizational results in the complexity and intellectual capital considered a condition to knowledge productive.

Knowledge is the basis of intellectual capital is the most important component of intangibles and the main source of resources innovation systems in the process of creating value for organizations and obtaining competitive advantage." (Sarmiento, et al, 2011), Knowledge is handled as analyzed and organized information (Nieves and Leon, 2001; Ortiz, 2003).

The idea is that, since knowledge exchanges occur under a network structure, connections or links should be assumed to be other actions that make IC (Nahapiet and Ghoshal, 1998).

Different IC researchers agree that knowledge is the aspect that generates current sustainable competitive advantage, however, there is no such clarity between the theoretical and practical implementation (Kaufmann and Schneider, 2004).

2.3 Learning and Feedback

Knowledge management is focused on the acquisition, analysis, implementation and reuse of knowledge in the organization, with the aim of improving the quality in business processes, lower cost and generating competitive advantages. The competency management systems focus the scope of the employee life cycle in the organization, from the beginning of the relationship in recruitment processes until final disengagement thereof (Urquiza, 2009).

The relationship between IC and KM is vital for an organization, because of the similarities and complementarity, ICM and KM should be linked to provide added value and should be made to work together by aligning the processes of KM with individual elements of CI. The reason for this linkage is competitive IC if used correctly and exploited, becomes the central resource for sustainable competitiveness, success and viability (Wiig, 1999).

Holland (2003) identifies the role of the central structural capital of human and value creation of the company, but recognizes the problems of retention and ownership of human capital. The views of Drucker (1994), Porter (1985) and Prahalad and Hamel (1990) also suggest that in a competitive environment, structural capital of a company is the key to increasing its value.

2.4 Competitiveness

There are various definitions of what is competitive, but most of them you can see that there is mention that competitiveness should basically be a relationship between government, society and business to generate economic growth.

Competitiveness is the product of a society of complex and dynamic interaction between government, companies, intermediary institutions and society organizational capacity. The competitiveness of the economy relies on goal-directed actions, articulated in four level system, and is based on a multidimensional conductor concept (Esser, Hillebrand, Messner and Meyer, 1995)
Competitiveness is the ability to achieve rapid and sustained economic growth (Garelli 2000), and the capabilities of the economy of a country to create added value continuously (Fouquin, 1986) as the share of exports of a nation in foreign markets.

Competitiveness is a multidimensional concept that involves different aspects, comparative advantages, competitive advantages, business strategies, results, among others (Waheeduzzaman, 2011).

Porter, 1990) and indicates that prosperity is not inherited, but is created and dependent on the ability to innovate and improve having the industry.

Schilling and Martinez (2008), suggest that the issue of competitiveness becomes more relevant in terms of determining what those factors on which it is necessary to articulate the business success is to achieve competitively positioned in a given market and what to do to maintain or improve that position which is a central theme in the direction of the company.

While the Competitiveness Mexican Institute (2012), known by its acronym in Spanish IMCO, defines competitiveness as the ability to attract and retain investment.

According to Aragon and Rubio (2006), the competitive success of a company has resources and capabilities, enabling it to achieve a favorable competitive position to maintain and enhance its position in the market, and get superior performance. The lack of competitiveness can have negative consequences, which may affect the financial condition of SMEs and lead to bankruptcy (Madrid, Garcia and Van Auken, 2009).

Vermeulen (2004) comments that innovation generates sustainable competitive advantage over time and one determinant of economic growth. For his part, Freel and Robson (2004), distinguishes innovative companies with reference to the intensity of product innovation, which measured as the proportion which the number of new products introduced to the total of goods.

It is necessary to implement and monitor cost accounting systems, analyzes of financial economic situation and attempt, as far as possible, using their own sources of financing (Birley and Westhead, 1994).

The technological advancement is a guarantee of competitiveness in business, Huerta et al. (2003) notes that SMEs should develop rapid, simple, transparent and practical Innovation Technology.

Tseng and James Goo, (2005) affirms that competitive success of an organization relates to the way in which tangible and intangible resources are managed. The intangible assets or intellectual capital includes structural human capital and clients. It plays an important role in competitiveness of a company and can increase profits (Hazlina, Zubaidah, 2008).

The innovate constantly is because they know the market needs are changing and they look forward to penetrate it, innovation is an essential factor for competitiveness, but it is also important to include internal factors such as technology and management, and external factors such as market structure and product position in the market.

3 Methodology

The surveys were applied in 420 SMEs of manufacturing industry in Guadalajara, Mexico, during March to June 2014.

The questionnaire was designed considering the competitiveness as dependant variable, and as independent variable the intellectual capital. Using the Likert scale in order to determine the degree of agreement or disagreement, and the survey was applied to 420 SMEs. The results were analyzed using confirmatory factor Analysis (CFA), Cronbach’s alpha and subsequently structural equation models (SEM).
Similarly, to measure the level of competitiveness were considered the three factors proposed by Buckley et al. (1988): 1) financial performance, 2) costs reduction, and 3) technology use, all of these, measured by a scale of 6 items. All the items of the three factors are built by a level Likert type of 5 positions, with 1 = completely in disagreement to 5 = completely agree as limits.

To assess the reliability and validity of scales measuring of the level of intellectual capital and business competitiveness, a Confirmatory Factorial Analysis (CFA) with the method of maximum likelihood and EQS 6.1 software (Bentler, 2005; Brown, 2006; Byrne, 2006).

Rates of statistical adjustment that were considered were the NFI, NNFI, IFC and RMSEA (Bentler & Bonnet, 1980; Byrne, 1989; Bentler, 1990; Hair et al., 1995; Chau, 1997; Heck, 1998).

There are seven hypotheses that will contribute to this research:

H1: Higher level of new information, higher level of intellectual capital.

H2: Higher level of knowledge development, higher level of intellectual capital.

H3: Higher level of learning and feedback, higher level of intellectual capital.

H4: Higher level of financial performance, higher level of business competitiveness.

H5: Higher level of cost reduction, greater level of business competitiveness.

H6: Higher level of technology use, greater level of business competitiveness.

H7: Higher level of intellectual capital development, higher level of business competitiveness.

According Hernandez, Fernandez & Baptista (2010), correlational research variables associated with a predictable pattern for a group or population. Correlated studies measure two or more variables to verify whether they are related to the same subject and then the correlation (Campos and Sosa, 2011) is analyzed.

The surveys were applied in 420 SMEs manufacturers in Guadalajara, Mexico, from March to July 2013, and the number of employees was from 11 to 250, simple random sampling was used, and the universe was 2847 SMEs, the construct is shown in the figure 1.

![Theoretical Model](image)

Fig. 1 theoretical model relating Intellectual Capital and Competitiveness
4 Analysis and Discussion

According to the table 1 shows the Cronbach’s alpha and the CRI exceed the value 0.70 recommended by Nunally and Bernstein (1994), and the variance extracted index (VEI) was calculated for the variables of the model, resulting in a higher value of 0.50 (Fornell & Larcker, 1981).

And for evidence of convergent validity, the results with the CFA, indicated that all items related factors are significant (p <0.001) and the size of all standardized factor loadings are greater than 0.60 (Bagozzi & Yi, 1988).

Table 1 Consistency internal and convergent validity of the theoretical model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Indicator</th>
<th>Factor Loading</th>
<th>Robust T- Value</th>
<th>Cronbach’s Alpha</th>
<th>CRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Search</td>
<td>CIB1</td>
<td>0.603</td>
<td>1.000*</td>
<td>0.646</td>
<td>0.695</td>
</tr>
<tr>
<td></td>
<td>CIB2</td>
<td>0.607</td>
<td>10.938</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIB3</td>
<td>0.595</td>
<td>11.829</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIB4</td>
<td>0.606</td>
<td>10.779</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knowledge Development</td>
<td>CIC1</td>
<td>0.601</td>
<td>1.000*</td>
<td>0.740</td>
<td>0.872</td>
</tr>
<tr>
<td></td>
<td>CIC2</td>
<td>0.598</td>
<td>11.402</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIC3</td>
<td>0.694</td>
<td>12.694</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIC4</td>
<td>0.608</td>
<td>9.825</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIC5</td>
<td>0.647</td>
<td>11.943</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning & Feedback</td>
<td>CIA4</td>
<td>0.610</td>
<td>1.000*</td>
<td>0.654</td>
<td>0.703</td>
</tr>
<tr>
<td></td>
<td>CIA5</td>
<td>0.617</td>
<td>12.382</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIA6</td>
<td>0.610</td>
<td>12.548</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIA8</td>
<td>0.603</td>
<td>12.131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial Performance</td>
<td>FP1</td>
<td>0.611</td>
<td>1.000*</td>
<td>0.682</td>
<td>0.702</td>
</tr>
<tr>
<td></td>
<td>FP2</td>
<td>0.615</td>
<td>9.191</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FP3</td>
<td>0.602</td>
<td>8.222</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FP4</td>
<td>0.608</td>
<td>8.398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost Reduction</td>
<td>PC3</td>
<td>0.757</td>
<td>1.000*</td>
<td>0.571</td>
<td>0.628</td>
</tr>
<tr>
<td></td>
<td>PC4</td>
<td>0.592</td>
<td>5.016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology Use</td>
<td>TE1</td>
<td>0.682</td>
<td>1.000*</td>
<td>0.795</td>
<td>0.798</td>
</tr>
<tr>
<td></td>
<td>TE2</td>
<td>0.673</td>
<td>17.606</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TE3</td>
<td>0.651</td>
<td>16.289</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TE4</td>
<td>0.589</td>
<td>14.807</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TE5</td>
<td>0.593</td>
<td>14.547</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TE6</td>
<td>0.59</td>
<td>13.165</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S-BX² (df = 260) =393.0910 (p < 0.0000); NFI = .864 ; NNFI = .941 CFI = .948 ; RMSEA = .032

*** = p < 0.001

Related to the evidence of the discriminant validity, measurement of the scale of the business competitiveness level was through two ways which you can see in more detail in table 2. First,
the range of 95% of confidentiality, none of the individual elements of the correlation factors
matrix contains the value 1.0 (Anderson & Gerbing, 1988).

Second, the variance extracted between each pair of factors is higher than its corresponding
VEI (Fornell and Larcker, 1981). Therefore, based on these criteria one can conclude that the
different measurements made on the scale show enough evidence of reliability and convergent
discriminant validity. See table 2.

The hypotheses were tested in the theoretical model of innovation and business
competitiveness, using the Structural Equations Model (SEM) software EQS 6.1 (Bentler, 2005;)
Byrne, 2006; (Brown, 2006).

The nomological validity of the theoretical model was analyzed through the performance of
the chi-square test, in which the theoretical model was compared with the measurement model,
not finding significant differences (Anderson & Gerbing, 1988; Hatcher, 1994). The results of
this analysis are presented in table 3.

Table 3 Results of the Theoretical Model of Business Competitiveness

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Structural Relationship</th>
<th>Standardized Coefficient</th>
<th>Robust T-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1: Higher level of new information, increase the level of intellectual capital.</td>
<td>Information search. → Int. Cap.</td>
<td>0.341***</td>
<td>11.182</td>
</tr>
<tr>
<td>H2: Higher level of knowledge development, increase the level of intellectual capital.</td>
<td>Knowledge develop. → Int. Cap.</td>
<td>0.308***</td>
<td>11.466</td>
</tr>
<tr>
<td>H3: Higher level of learning and feedback, increase the level of intellectual capital.</td>
<td>Learning & feedback → Int. Cap.</td>
<td>0.326***</td>
<td>12.354</td>
</tr>
<tr>
<td>H4: Higher level of financial performance, greater level of business competitiveness.</td>
<td>Financial → Perfor. Competitiveness</td>
<td>0.335***</td>
<td>8.31</td>
</tr>
<tr>
<td>H5: Higher level of cost reduction, greater level of business competitiveness.</td>
<td>Cost Reduction → Competitiveness</td>
<td>0.424***</td>
<td>5.016</td>
</tr>
<tr>
<td>H6: Higher level of technology use, greater level of business competitiveness.</td>
<td>Technology use → Competitiveness</td>
<td>0.447***</td>
<td>15.283</td>
</tr>
<tr>
<td>H7: Greater level of intellectual capital development, greater level of business competitiveness.</td>
<td>Intel. Capital → Competitiveness</td>
<td>0.601***</td>
<td>18.773</td>
</tr>
</tbody>
</table>

$S\text{-}BX2 \ (df = 243) = 367.3889; \ p = 0.000; \ NFI = 0.873; \ NNFI = 0.941; \ CFI = 0.952; \ RMSEA = 0.032$

*** = p < 0.001

The table 3 shown the results obtained of the Structural Equations Model, with regard to the
H1 the results obtained, $\beta = 0.341$, p < 0.001, indicate that searching information has significant
effects with the intellectual capital in manufacturing firms. As for the hypothesis H2, the results
obtained, $\beta = 0.308$, p < 0.001, suggest that knowledge development also have significant effects
in the intellectual capital. The hypothesis H3 the results obtained, $\beta = 0.326$, p < 0.001, suggest
that the learning and feedback also have significant effects in the manufacturing firms.
Related to competitiveness, in hypothesis H4 the results obtained, $\beta = 0.335$, $p < 0.001$, indicate that the financial performance has significant effects on the competitiveness level. In the hypothesis H5 the results obtained, $\beta = 0.424$, $p < 0.001$, suggest that cost reduction also have significant effects on business competitiveness. The results obtained in the hypothesis H6, $\beta = 0.447$, $p < 0.001$, suggest that the technology use also has significant effects on business competitiveness.

Finally, the results obtained in the hypothesis H7, $\beta = 0.601$, $p < 0.001$, presented that the intellectual capital has significant effects on business competitiveness.

This research had shown that SME’s manufacturing in Guadalajara, have a good correlation between the dependent variable competitiveness with the independent variable intellectual capital, and the results expressed in this study appear to be consistent with the relation of factors technology use, costs and financial performance with the variable competitiveness, and also the factors information search, knowledge development, and learning and feedback are related with the variable intellectual capital.

These SME’s are in a transformation process of administrative schemes, with a more cognitive and sustainable system, being conscious to create and generate new information, increasing knowledge development and learning and feedback knowledge in all the organization.

5 Limitations

The first limitation, the sample considered companies from 20 to 250 workers, excluding the companies from 1 to 10 workers, witch representing an important quantity of the total manufacturing SME’s, then, for future studies should be important to consider this companies to analyze the effects of intellectual capital in business competitiveness.

A second limitation is that the questionnaire was applied to directors or CEO’s level, and the results could differ in functional managers. Therefore, in future studies, it could be important to consider the opinion of customers and suppliers to analyze the results obtained.

Finally, it is important to go beyond the technical results and discuss in greater depth: what effects should in SME manufacturing if a more quantiative scale is used to measure the business competitiveness? What results would be in SME manufacturing if applies a more sophisticated model for the measurement of business competitiveness? What specific activities of the financial performance, the reduction of costs and the use of technology are those that most affect business competitiveness? These and other questions that may arise can be answered in future research.
References

Sarmiento, G., Román, I. (2011) “Propuesta de un modelo de capital intelectual para medir y gestionar los intangibles de las entidades públicas”, Proceeding of XVI Congreso AECA.

